Note 99

## Reaction of a Zwitterionic Pyridinium Ylide with *N*,*N*-Dimethylaniline

Kamal Sweidan<sup>a</sup>, Norbert Kuhn<sup>b</sup>, Cäcilia Maichle-Mößmer<sup>b</sup>, and Manfred Steimann<sup>b</sup>

<sup>a</sup> Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, Jordan

b Institut für Anorganische Chemie der Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany

Reprint requests to Dr. K. Sweidan. E-mail: kamal\_sweidan@hotmail.com, or Prof. Dr. N. Kuhn. E-mail: norbert.kuhn@uni-tuebingen.de

*Z. Naturforsch.* **2010**, *65b*, 99 – 100; received August 13, 2009

1,3-Dimethyl-2,4,6-trioxo-5-pyridinomethyl-1,3-perhydrodiazin-5-ylpyridinium ylide ( $\mathbf{3}$ ) reacts with *N*,*N*-dimethylaniline to give 5-((1,3-dimethyl-2,4,6-trioxo-hexahydropyrimidin-5-yl)methyl)-5-(4-(dimethylamino)benzyl)-1,3-dimethylpyrimidine-2,4,6(1H3H5H)-trione ( $\mathbf{6}$ ) in good yield. The crystal structure of  $\mathbf{6}$  is reported.

Key words: Heterocycles, Barbituric Acid, Crystal Structure

There has been much interest in barbituric acid derivatives (1) in the past years owing to their potential application as drugs [1, 2]. Catalytic hydrogenation of 5-methylenebarbituric acid derivatives (2) seems to offer a useful access to 1 [3] in addition to methods mentioned formerly [1, 4]. Recently, we reported on the synthesis of the zwitterionic pyridinium compound 3 and its substitution reactions [5].

Surprisingly, it has now been found that the reaction of **3** with *N*,*N*-dimethylaniline does not stop with the formation of the zwitterionic compound **4** and its anion **5**. Apparently, the enolate **5** is sufficiently nucleophilic to attack a second molecule of **3** to give the final product **6** in good yield (Scheme 1).

The crystal structure analysis of **6** (Table 1, Fig. 1) reveals the presence of a central barbituric ring connected to both an aniline and an additional barbituric ring by methylene bridges. Interestingly, the "terminal" barbituric ring also adopts a diketo structure which underlines the C-basicity of the enolate fragment. Bond lengths and angles are in the expected range (see Table 2).

In summary, our results confirm the suitability of the easily prepared pyridine adduct 3 as starting com-

(a) 
$${}^{1}R$$
  ${}^{1}R$   ${}^{0}$   ${}^{1}R$   ${}^{1}R$   ${}^{0}$   ${}^{1}R$   ${}^{1}R$ 

5 
$$\frac{3}{-C_5H_5N}$$
  $O = N(CH_3)_2$   $O = N(CH_$ 

$$\begin{array}{c|c} C_5H_5NH & & & \\ \hline -C_5H_5N & & \\ \hline -C_5H_5N & & \\ \end{array}$$

Scheme 1.

pound for the synthesis of barbituric acid derivatives  ${\bf 1}$ . We will continue our investigations about pyridine substitution in  ${\bf 3}$  and report on our results in due course.

## **Experimental Section**

All experiments were performed in purified solvents under argon. The pyridine adduct 3 was obtained according to a published procedure [5].

0932-0776 / 10 / 0100-0099 \$ 06.00 © 2010 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com

100 Note

Table 1. Crystal data and structure refinement for  $C_{22}H_{27}N_5O_6$  (6).

| Empirical formula                          | $C_{22}H_{27}N_5O_6$               |
|--------------------------------------------|------------------------------------|
| Formula weight, g mol <sup>-1</sup>        | 457.49                             |
| Temperature, K                             | 173(2)                             |
| Wavelength; λ, Å                           | $MoK_{\alpha}$ ; 0.71073           |
| Crystal system                             | monoclinic                         |
| Space group                                | $P2_1/n$                           |
| a, Å                                       | 12.1221(9)                         |
| b, Å                                       | 9.287(1)                           |
| c, Å                                       | 20.090(2)                          |
| $\beta$ , deg                              | 101.787(6)                         |
| V, Å <sup>3</sup>                          | 2214.1(3)                          |
| Z                                          | 4                                  |
| Density, g cm <sup>-3</sup>                | 1.37                               |
| $\mu(\text{Mo}K_{\alpha}), \text{mm}^{-1}$ | 0.1                                |
| <i>F</i> (000), e                          | 968                                |
| $\Theta$ range for data collection, deg    | 3.09 - 26.36                       |
| hkl ranges                                 | $\pm 15, \pm 11, \pm 25$           |
| Reflections collect. / indep. / $R_{int}$  | 30767/4515/0.098                   |
| Refinement method                          | Full-matrix least-squares on $F^2$ |
| Data / restraints / parameters             | 4515/0/407                         |
| $R1/wR2 [I \ge 2 \sigma(I)]$               | 0.0520/0.1048                      |
| R1/wR2 (all data)                          | 0.0677/0.1111                      |
| Goodness-of-fit on $F^2$                   | 1.151                              |
| $\Delta \rho$ (max/min), e Å <sup>-3</sup> | +0.267 / -0.207                    |

## $C_{22}H_{27}N_5O_6$ (6)

To a solution of **3** (2.2 g, 8.9 mmol) in dichloromethane (20 mL) *N*,*N*-dimethylaniline (0.62 g, 4.9 mmol) was added. The mixture was stirred at r. t. for 24 h. The solvent was removed *in vacuo* to give 0.79 g (70 %) **6** after recrystallization from dichloromethane/diethyl ether. – <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  = 2.75 (s, 2 H, 4<sub>Ph</sub>-CH<sub>2</sub>), 2.83 (s, 6 H, NMe<sub>2</sub>), 2.95 (s, 2 H, 5'-CH<sub>2</sub>), 3.01 (s, 6 H, 1',3'-CH<sub>3</sub>), 3.15 (s, 6 H, 1,3-CH<sub>3</sub>), 3.65 (s, 1 H, 5'-H), 6.48 – 6.69 (m, 4 H, C<sub>6</sub>H<sub>4</sub>). – <sup>13</sup>C NMR (CDCl<sub>3</sub>):  $\delta$  = 28.2 (1,3-CH<sub>3</sub>), 28.5 (1',3'-CH<sub>3</sub>), 33.7 (4<sub>Ar</sub>-CH<sub>2</sub>), 40.3 (NMe<sub>2</sub>), 44.6 (C<sup>5'</sup>), 49.5 C<sup>5</sup>), 56.1 (5'-CH<sub>2</sub>), 111.8 (C<sup>2,6</sup><sub>Ar</sub>), 119.9 (C<sup>4</sup><sub>Ar</sub>), 129.7 (C<sup>3,5</sup><sub>Ar</sub>), 150.3 (C<sup>1</sup><sub>Ph</sub>), 150.6 (C<sup>2</sup>), 151.2 (C<sup>2'</sup>), 168.3 (C<sup>4',6'</sup>), 170.9 (C<sup>4,6</sup>). – MS (FAB): m/z (%) = 457 (11) [M–H]<sup>+</sup>, 288 (15) [M–BCH<sub>3</sub>]<sup>+</sup>. – Elemental analysis for C<sub>22</sub>H<sub>27</sub>N<sub>5</sub>O<sub>6</sub> (457.48): calcd. C 57.76, H 5.95, N 15.31; found C 57.41, H 6.19, N 15.12.

J. T. Bojarski, J. L. Mokrocz, H. J. Barton, M. H. Paluchowska, Advan. Heterocycl. Chem. 1985, 38, 229;
K. Undheim, T. Bennecke, A. R. Katritzky, C. W. Rees, E. F. V. Scriven, Comprehensive Heterocyclic Chemistry II, Vol. 6, Elsevier Pergamon, Oxford, 1996, p. 93;
S. von Angerer, Science of Synthesis 2004, 16, 379.

Table 2. Selected bond lengths (Å) and angles (deg) for  $C_{22}H_{27}N_5O_6$  (6).

| C(1)-C(6)         | 1.503(3) | C(14)-N(15)     | 1.382(2) |
|-------------------|----------|-----------------|----------|
| C(1)-C(2)         | 1.505(3) | N(15)-C(16)     | 1.381(3) |
| C(1)-C(12)        | 1.556(3) | C(16)-O(21)     | 1.208(2) |
| C(2)-O(7)         | 1.209(2) | C(16)-N(17)     | 1.393(3) |
| C(2)-N(3)         | 1.379(2) | N(17)-C(18)     | 1.371(2) |
| N(3)-C(4)         | 1.390(2) | C(18)-O(23)     | 1.215(2) |
| C(4)-O(9)         | 1.205(2) | C(24)-C(25)     | 1.507(3) |
| C(4)-N(5)         | 1.394(2) | C(25)-C(26)     | 1.390(3) |
| N(5)-C(6)         | 1.372(2) | C(25)-C(30)     | 1.391(3) |
| C(6)-O(11)        | 1.216(2) | C(26)-C(27)     | 1.383(3) |
| C(12)-C(13)       | 1.537(2) | C(27)-C(28)     | 1.404(3) |
| C(13)-C(18)       | 1.512(3) | C(28)-N(31)     | 1.377(3) |
| C(13)-C(14)       | 1.514(3) | C(28)-C(29)     | 1.402(3) |
| C(13)-C(24)       | 1.589(3) | C(29)-C(30)     | 1.384(3) |
| C(14)-O(19)       | 1.210(2) |                 |          |
| C(13)-C(12)-C(1)  | 116.4(2) | C(6)-C(1)-C(2)  | 115.1(2) |
| C(12)-C(13)-C(24) | 106.8(2) | C(6)-C(1)-C(12) | 111.6(2) |
| C(25)-C(24)-C(13) | 115.1(2) | C(2)-C(1)-C(12) | 106.1(2) |
| C(33)-N(31)-C(32) | 117.6(2) |                 |          |

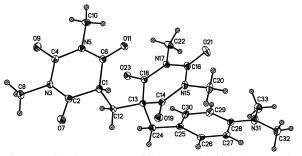



Fig. 1. Molecular structure of C<sub>22</sub>H<sub>27</sub>N<sub>5</sub>O<sub>6</sub> (**6**) in the crystal.

CCDC 743774 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data\_request/cif.

## Acknowledgement

Financial support by the Deutsche Forschungsgemeinschaft and the Higher Council of Science and Technology of Jordan is gratefully acknowledged.

- [3] B. S. Jursic, D. M. Neumann, *Tetrahedron Lett.* 2001, 42, 4103; B. S. Jursic, E. D. Stevens, *Tetrahedron Lett.* 2003, 44, 2203.
- [4] For more recent results, see C. Löfberg, R. Grigg, A. Keep, A. Derrick, V. Sridharan, C. Kilner, *J. Chem. Soc.*, *Chem. Commun.* 2006, 5000, and refs. cited therein.
- [5] N. Kuhn, A. Kuhn, E. Niquet, M. Steimann, K. Sweidan, Z. Naturforsch. 2005, 60b, 924.

<sup>[2]</sup> R. G. Sans, M. G. Chosaz, *Pharmazie* 1988, 43, 827; J. B. Taylor, *Modern Medical Chemistry*, Prentice Hall, New York, 1994.